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CALCULATTION OFAATMOSPHERIC RADIANCES AND BRIGHTNESS TEMPERATURES
IN INFRARED WINDOW CHANNELS OF SATELLITE RADIOMETERS

Michael P. Weinreb and Michael L. Hill
Office of Research, National Environmental Satellite Service,
NOAA, Washington, D.C. 20233

ABSTRACT. We describe s method of simulating measurements
of atmospheric radisnces and brightness tempersatures in
wide-band window channels (&t 11 and 3.7 uym) of satellite
radiometers. As input the simulation tskes vertical
profiles of atmospheric tempersture and water-vapor mixing
ratio, as well as the spectral response functions of

the window chennels. It models the atmospheric
transmittences and integrates the equation of radiative
transfer. We demonstrate the use of the method with
applications to the Advanced Very High Resolution
Radiometer on the TIROS-N satellite.

1. INTRODUCTION

The environmental satellites operated by NOAA's National Environmental
Satellite Service (NESS) carry instruments that measure the intensity of
rediation upwelling from the earth's surface in the infrared "windows" at
wavelengths near 11 um and 3.7 um. Among these instruments are the
Scanning Radiometers (SR) on the ITOS 1 and NOAA 2-5 satellites, the Very
High Resolution Radiometers (VHRR) on the NOAA 2-5 satellites, the Visible
and Infrared Spin-Scan Radiometers (VISSR) on the current SMS/GOES
satellites, and the Advanced VHRR's (AVHRR) on the current TIROS-N series
of satellites. Windows are spectral intervals in which the atmosphere is
nearly trensparent to the radiation emitted by the earth's surface. Although
the atmosphere's effect on the radiation is small, it is, nevertheless, not
negligible. For example, in the ll-um region a moist atmosphere may
attenuate the radiation emitted by the earth's surface to space by 5-10%.
Therefore, to infer properties of the surface from measurements in windows,
we need to model theoretically the radiative transfer in the atmosphere.

This report documents a procedure for computing, in the 1l- and 3.7-um
windows, the rediances and brightness temperatures that would be measured by
an orbiting radiometer, given the temperature of the earth's surface and the
vertical temperature and water-vapor profiles of the atmosphere. The model
also takes into account other gases that absorb and emit radiation at these
wavelengths. For the instruments considered here, which view ih the nadir
or near-nadir, these gases are carbon dioxide, nitrogen, nitrous oxide, and
methane. The computations apply to spectral intervals whose widths range
from several tens to seversl hundreds of em~l, A computer program that
incorporates the method described in this paper is currently in use at NESS.
Copies of this program are available on request.



The literature describes a number of earlier transmittance models that have
been applied in the 1ll-um window (Wark et al. 1962, Davis and Viezee 196L,
Saiedy and Hilleary 1967, Anding and Kauth 1969, Smith et al. 1970, and
Maul end Sidran 1973). These works were published before the importance of
the self-broadened water-vapor continuum (Bignell 1970) was recognized. More
recently the computer code LOWTRAN (McClatchey et al. 1972, .Selby et al.
1978) was developed for modelling radiative transfer in the atmosphere in
20-cm~1 intervals throughout the infrared spectrum, including both the 1l-um
and 3.7-um window regions.

The method described in this report evolved from the algorithm (Wark et al.
1974, Weinreb and Neuendorffer 1973) developed at NESS to calculate radiances
in the 11-um window channel of the Vertical Temperature Profile Radiometers
(VIPR) (McMillin et al. 1973) on the NOAA 2-5 satellites.

The present method has the following new features:
1. Tt can be applied to spectral intervals thet are several hundred cm'-l
in width. (The VTPR interval was about 8 cm~l in width.)

2. Tt applies in both the 3.7- and the 1l-um windows.

3. It incorporstes recent advances in calculating transmittances,
particularly those in modelling the nitrogen absorption near 4 um
and the water-vapor continua in the 11- and 3.7-um regions.

Section 2 of this report introduces the radiastive transfer equation and
describes our techniques of calculating radlances and brightness temperatures
while coping with the variation of the Planck function over the considerable
width (in wavenumber) of the spectral intervals. Section 3 describes the
transmittance calculations, which include the effects of HpO lines and
continue, the collision-induced No band near 4 pym, and the "uniformly mixed"
gases, particularly COp, CH4, and NoO. Section i describes the numerical
procedures for calculating transmittances and integrating the radiative
transfer equation. The report concludes with a few applications of the
calculations to the AVHRR on TTROS-N. '

2. APPLICATION OF THE RADIATIVE TRANSFER EQUATION
IN WIDE SPECTRAL INTERVALS

2.1 The Radiastive Transfer Equation

The upwelling radiance R(v) at wavenumber v can be calculated from
knowledge of the temperature of the earth's surface, the atmospheric vertical
tempersture profile, and the vertical profiles of concentretions of the gases
that absord radiation at v. We accomplish this by numericelly integrating
the equation of radlative transfer in its integral form (see, e.g., Wark
and Fleming 1966),

-
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where B = Planck radiance,
T = atmospheric temperature,
8 = gubscript indicating that a quantity is to be evaluated at the
earth's surface,
P = atmospherlc pressure, and
©(p,v) = transmittance between the satellite and the level of the
atmosphere with pressure p.

The Planck radiance is given by

SheZy3
exp[hev/kT]- 1 °*

B(T,v) =

where h, ¢, and k are, respectively, Planck's constant, the speed of light,
and Boltzmann's constant.

Equetion (1) holds under cloudless conditions for nonscattering, plane-
parellel stmospheres in local thermodynamic equilibrium.

¢

2.2 Radiance Calculations in Wide Spectral Intervals -

Equation (1) holds only for monochromatic radiation. TFor it to be applied
to a spectral interval of a broad-band instrument, it must be convoluted
with the spectral response function ¢(v) of the interval. Figures 1 and 2
show such functions for channels 4 and 3 of the AVHRR on TIROS-N. The
rediance R¢ that would be measured in any of these intervals is then given
by

o0

Ry = fR(V) ¢(v)av /f ¢(v)av , ' (2)
(@] [o]

)

where R(v) is computed from equation (1). To integrate equation (2)
numerically, one must first integrate equation (1) numerically for a large
number of closely spaced values of v. This is too cumbersane for our
purposes. However, if the function ¢(v) is narrow enough (say, 30 em™t
or less in half~width), we can find a wavenumber Vo such thet R¢ can be
approximated adequately (Wark and Fleming 1966) by
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Unfortunately, we are working with spectral intervals having widths of
100 em™! or greater, for which eq. (3) produces errors comparable to or
exceeding the noise in the measurements of Ry. We resort, then, to a more
accurate procedure. We first subdivide each spectral intervel into
rectangular subintervals, 30 or 20 em~l in width, as shown in figures 3 and
L. Within these subintervals eq. (3) is an adequate approximation (see below)
i.e., if the index i labels each subinterval, we can apply eq. (3) to compute
a value of radiance Ry in the subinterval. Then to estimate the radiance for
the full interval, we compute the weighted mean of the Ry 's, where the
weights are the heights hy shown in figures 3 and 4. That is,

R = zi: hyRy 4? By - | . ()

In our calculations we chose the vy's to be at the center of each
subinterval, and we chose the hi's so that in each subinterval the area under
the spectral response function equals the area of the rectangle. As shown in
figures 3 and 4, the widths of the subintervals are 30 cm™l near 11 um and
20 cm-1 in the 3.7-um region.

The accuracy of eq. (4) depends on the behavior of not only the Planck
radiance, but also the transmittance, as functions of wavenumber in the
spectral interval of interest. A simple, rough way to estimate the ‘accuracy
of eq. (4) is to ignore the transmittances, i.e., work with blackbody
radiances instead of atmospheric radiances. Following this approach, for
fixed temperature T we computed the blackbody radiances in three separate
ways, the "exact" calculation and two approximations. For the exact
calculation, we convoluted the Planck function B(T,v) with the spectral
response function, i.e., we applied eq. (2) with R(v) replaced by B(T,v).

In numerically evaluaeting the integrals we applied the trapezoidal rule on
points spaced every 0.1 em~l. The first approximation was simply the Planck
function evaluated at the centroid of the spectral response function. (This
is the form of eq. (3) for blackbody radiances.) For the spectral response
functions shown in figures 1 and 2, the centroids are at 913.3 em~! and
2656.3 cm~1, respectively. The second approximation was the one of eq. (k4),

-k



with Ry replaced by B(T,v). The errors in each approximation were computed
as the differences between the results of the epproximetions and those of the
"exact" calculation. The absolute values of these errors are shown in

figure 5 as functions of temperature. The upper panel applies to the AVHRR's
11-um channel, and the lower to the AVHRR's 3.7-um channel. The horizontal
dashed lines are the nominel values of the NEAN's (instrument noise, in
radiance units) in the two channels. At 11 ym, the first approximation
(centroid) produces errors comparable in magnitude to the NEAN, while the
second approximation (eq. (L)) holds the errors to values less than half of
the NEAN. At 3.7 um, the first approximation (centroid) produces errors
meny times larger than the NEAN, while eq. (4) reduces these errors to values
approximately equal to the NEAN. However, since we have ignored the
transmittances in this analysis, the results provide only an estimate of the
errors.

In the remainder of this report, eq. (4) is used in computations of
atmospheric radiances.

2.3 Conversion of Atmospheric Radiances to Brightness Temperatures

In many applications, users of satellite data prefer to work with equivalent
brightness temperature rather than radiance. We convert our calculated
atmospheric radiances to brightness temperatures through look-up tables, one
for each channel. Each table consists of 1501 pairs of blackbody radiances
and their corresponding temperatures. The pairs are specified every 0.1°K
between 180°K and 330°K. Each value of blackbody radiance in a table depends
upon the spectral response function ¢ and is computed from eq. (L), with Ry
replaced by B(T,vy). In other words, it is the weighted average of Planck
radiances evaluated at the centers of the rectangular subintervals of figures
3 or 4, with the weights given by the heights hj. The date in the look-up
tables for channels 3 and 4 of the AVHRR are graphed in figure 6.

It is importent to realize that because they are computed from eq. (L), the
blackbody radiances in the look-up tables are not error-free, but carry with
them the errors shown in figure 5. However, by computing the look-up table
this way, we tend to minimize the errors in the inferred equivalent bright-
ness temperatures, for the following reason: Recall that the first step in
deriving an equivalent brightness temperature is the application of eqs. (3)
and (4) to the atmospheric temperature profile to produce an atmospheric
radisnce. As previously described, this radience carries with it an error
than can be estimated from figure 5. The second step is to refer to this
value of radiance in the look-up table and extract the corresponding
equivalent brightness temperature. If the blackbody radisnces in the look-up
table are subject to exactly the same errors as are the atmospheric radiances,
the errors in the two steps will compensate, and the derived equivalent
brightness temperatures will be error-free. As described earlier, however,
the errors in the blackbody rediances will not coincide exactly with the
errors in the atmospheric Tadiances. Hence, using the look-up table
generated from eq. (4), we will minimize the errors in the inferred
equivalent brightness temperatures but not eliminate them.

~5-



3. CALCULATIONS OF TRANSMITTANCES
3.1 General

The first step in calculating radiances is to generate transmittances in
each of the subintervals shown in figures 3 and 4. In the 1l-um window,
eight intervals, each 30 ecm~! wide, span the re%ion from T60 to 1000 cm~rt.

In the 3.7-um window, 23 intervals, each 20 cm™ wide, span the region from
2440 to 2900 em~t. In each subinterval, the transmittance of the atmosphere
is treated as a product of the transmittancesof the atmospheric constituents
that absordb radiation. In the 1ll-um region, the constituents are water vapor
and the "uniformly mixed gases" (McClatchey et al., 1972), principally carbon
dioxide. 1In the 3.7-um region, the constituents are water vapor, molecular
nitrogen, and the uniformly mixed gases, chiefly carbon dioxide, nitrous
oxide, and methane. We have intentionally neglected ozone. It is important
only between 980 and 1000 ecm-l, whereas the responses of our satellite
instruments, as measured by the ¢(v) functions, are small, if not zero, in
this subinterval. The effects of aerosols and clouds are also ignored.

3.2 Atmospheric Absorption Spectra

The purpose of this section is to describe generally the nature of
atmospheric absorption in the window regions. Figures 7 and 8 are measured
absorption spectra of the atmosphere in the 11~ and 3.7-um regions,
respectively (Weinreb, Planet, and Jones 1977). (Figure T does not cover the
entire T760-1000 em~1 range, but it is useful, nonetheless, for the qualitative
discussion here.) The spectra were taken with a spectrometer receiving solar
radiation through the McMath solar telescope at the Kitt Peak National
Observatory. The spectral resolution is about 0.7 em™! near 11 ym, and
7.0 em~1 near 3.7 um.

In the 11-ym window, water vapor dominates the absorption, contributing
spectral lines and a continuum. The continuum (Bignell 1970) is absorption
that has little dependence on wavenumber. In figure 7 its effect is most
noticeable between the spectral lines, where the envelope of the spectrum has
a value of transmittance less than one. In this case it is about 0.98, so
the continuum absorption is about 2%. Incidentially, this spectrum was taken
under very dry conditions (precipitable water = 0.6 cm). Under typical mid-
latitude or tropical conditions (precipitable water = 2 or 6 cm, respectively),
the absorption is considerably stronger. For wavenumbers lower than 820 em-1,
carbon dioxide makes some contribution to the absorption. Its effect is seen
in the strong line near 792 em™l and in the background absorption that
increases with decreasin§ wavenumber. Carbon dioxide also has a small effect
between 930 and 1000 em™™ (not shown in figure 7). As mentioned in the
preceding section, our calculations ignore the absorption by ozone, which is
measurable only for v > 980 cm™t.

~6m



In the 3.7~um window, the principal absorbers are nitrous oxide, carbon
dioxide, methane, water vapor (mostly as HDO), end molecular nitrogen.
Nitrous oxide contributes the band near 2570 em™! and the high~wavenumber
part of the sharp fall-off between 2400 and 2500 em™. Near 2400 cm~1
carbon dioxide dominates, but it rapidly loses strength toward higher
wavenumbers. The region between 2400 and 2500 em~l is also affected by the
collision-induced nitrogen absorption (Shapiro and Gush 1966, and Farmer and
Houghton 1966). Between 2700 and 2900 em™l, water vapor and methane are the
principel absorbers. Throughout the 3.T7-ym window there is also & small
contribution from the water-vapor continuum (White et al. 1978).

3.3 Transmittence of Atmospheric Constituents
3.3.1 Water Vapor

The transmittance of water vapor in the rectangular subintervals is treated
as a product of the transmittances of spectral lines and of continua. For
calculating transmittences of spectral lines, we use the method of Weinreb
and Neuendorffer (1973). This method demsnds far less time and memory on the
computer than does the line-by-line technique, yet it is nearly as accurate.
The method treats the atmosphere as a succession of homogeneous layers, in
each of which the pressure, temperature, and mixing ratio are constant. Over
the path between the satellite and the bottom of a given layer, the
transmittance Ty is computed from a function of the layer's total pressure
(P) and temperature (T), and a scaled value of the water vapor amount (U).
For the function of P, T, and U we chose a polynomial representation similar
to that suggested by Smith (1969). In our calculation we used the following
polynomisl expression:

1h

In(-lnt,) = 2 ©C,(v) X,
im=l

where T is transmittance averasged over the rectangular subinterval,

xl =1, X, = 0.1 1n (ur/273), x3 = 1n(P/1000),
X, = 1n(7/273), X5 = X Xo, Xg = XX »
2
Xp =X, Xg = XhXT , x9 = x3xh,
- 2
X10 = Xkgs  Xqq = X Xg s Yo% »
X153 = X3¥%gs and X, x3x7.



The polynomial coefficients Cy were derived by a least~squaresfitting of the
polynomial to transmittances calculeted line by line (Neuendorffer 1977) and
averaged over the rectangular subintervals for a large dependent sample of
homogeneous paths. Table 1 lists these coefficients.

The heart of the approximation is the procedure for calculating the scaled
values of U in each layer. This is described in detail by Weinreb and
Neuendorffer (1973).

The two water vapor continue are usually termed the self-broadened and the
foreign~broadened continua. In the former, the absorption coefficient is
proportional to the partial pressure of water vapor, while in the latter it is
proportional to the partial pressure of the dry atmosphere. Following Roberts
et al. (1976), the atmospheric ‘transmittance in the self-broadened continuum
is given by the equation,

-1n st(L,v) = ¢°(v) ~I. Wﬁgo PH20 exp[To(%-- E%EO]dQ R (5)

transmittance between the satellite and a level in the

where st(L,v)
atmosphere at a distance L cm from the satellite,

Wy o = density of water vapor, in molecules cm™3,

PH20 = partial pressure of water vapor, in atmospheres,
2 ,

To = reference temperature described below, and

co(v) = coefficient described below.

Por convenience in computation we have applied the hydrostatic equation to
(5) and made some changes in units to obtain

P

-ln st(P,v) = 5.hlx10l3 c®(v) seco J{ P re exp[T (—- ——g)]dp, (6)
[o]

where 6 = angle between line of sight and the local verticsal,
P = atmospheric pressure in mb,
r = mass mixing ratio of water vapor in g/kg, and
T b(P,v) = transmittance between the satellite and a point in the
8 atmosphere with pressure P.

The values of C° in eq. (6) are listed in table 2. TFor the 1l-um region,
these values were derived from Roberts et al. (1976). For the 3.T-um region
they came. from Burch et al..(1971). For T, we use 1800°K in the 1l-um region,
{Roberts et al.. 1976) and in the 3.7-um region we use the value of 1300°K,
which was derived from the data of Burch et al. (1971).

-8~



The foreign~broesdened continuum was ignored in the 11 um region, because
its effect is reported to be negligible (Roberts et al, 1976). In the 3.T-um
region, however, it cannot be ignored. The transmittance tp for this
continuum is given by (Burch 1971),

L
-1n 7, (L,v) =y ¢°(v) f Wy
o

P 4L . | (7
20 D

The notation in eq. (7) is the same as in eq. (5). Also, Pp is the partial
pressure of the dry atmosphere,and vy is the ratio of foreign broaden-
ing to self-broadening. Equation (7) contains no temperature dependence, in
part because it is poorly known, and in part because it is small.

As suggested by Burch et al. (1971) we adopted the value 0.12 for Y.
Inserting this into eq. (7), using the approximation Pp = total pressure, and
menipulating eq. (7) as we did eq. (5), we obtain

P
-ln T, (P,v) = L. obx10%? c®(v) sech .[ p r dp. (8)

(¢}

Note that the coefficients Co(v) have been selected at the centers of the
subintervals of figures 3 and 4. Since these coefficients are slowly varying
functions of wavenumber, the transmittances calculated from them are
representative of averages over the subintervals of figures 3 and L.

We have discussed separately the methods of calculation of transmittances
for water vapor in spectral lines and the two continua. To obtain the over-

all transmittance of water vapor, we take the product of the transmittances
of these three components.

3.3.2 Molecular Nitrogen

Molecular nitrogen has a collision~induced absorption band centered at
2330 em™l. Following Burch et al. (1971), the transmittance Tty in this band
for homogeneous paths (paths where pressure, temperature, and mixing ratios
are all constant), is given by,

2

| 26 Pal
-In ty(L,v) = 5.6Tx107° Cl(T,v) —H—, (9)
where Py = atmospheric pressure in atmospheres, and Cy(T,v) = Burch's "self-

induced" coefficient for nitrogen absorption, in units of molecules~ em?
atm-1l. The remaining notation is as in eq. (5). ‘



The coefficient Cy(T,v) has a pronounced dependence on temperature, which
is formulated as follows: Susskind and Searl (1977) demonstrate that the
In T

N

.. oL -
No in units of molecules cm 3. By, combining eq. (9) with the hydrostatic
equation, we get

is very nearly independent of T, where p is number denéity of

quantity

1n TN(L,V)

2 .

c (T,v) ~
N pL T

Therefore, Cy(T,v) has a temperature dependence of %3 and we can define a
temperature~-independent coefficient CN(296,v) by
€. (296,v) = == C (T,v) . \ (10)
N'©7PT T 206 N ,

Combining egs. (9) and (10) and applying the result to an atmospheric slant
path, we obtain

L 2
_ P .
-1n 1y(L,v) = 5.67x102° C;(296,v) f (%%6-) —% de. (11)
' ©

Manipulating eq. (11) as we did eq. (5), we obtain the form used in our
computations,

-1n 1,,(P,v) = h.7Tx10° Cy(296,v) sece o/T dp. (12)
0

The coefficients Cy(296,v) were derived from Shapiro and Gush (1966) and are
given in the fourth column of table 2. Since they are slowly varying
functions of wavenumber, the transmittances calculated from them are
representative of averages over the subintervals of figures 3 and k.

3.3.3 Uniformly mixed gases

The uniformly-mixed gases comprise CO2, NoO, CO, CHY, and O2. As mentioned
in section 3.2, CO2 absorbs weakly in the 1ll-pm window, whereas COp, N5O
and CH), absorb weakly in the 3.T-um window. The method of calculating
transmittances is taken from LOWIRAN (McClatchey et al. 1972 and Selby et al.
1978) and is summarized in the following parsagraphs.

~10~



The transmittances from LOWTRAN heve & spectral resolution of 20 cm"l and

are specified at every S5 cn~l throughout the visible and infrared spectrum.
Transmittances are computed separately for each of the processes in the
atmosphere, e.g., absorption by uniformly mixed gases, absorption by water
vapor continua, molecular scattering, ete. The uniformly mixed gases are
treated a8 a unit, with relative concentrations given in McClatchey et al.
(1972). These concentrations are built into the model, so that the user
does not have to specify them. The basic idea of LOWIRAN is that
transmittances through any slant path can be calculated rapidly in a single
operation by the equation,

Ty (v, P,T) = F [Cu(v) + log, w(P,T)] . (13)

transmittance of the uniformly mixed gases,
wavenumber-dependent coefficient, related to the absorption
coefficient representing a 20 cm~l interval,

"equivalent absorber amount" in the slant path, and

a known function, specified in a look-up teble, as described
belov.

where T
Cu(vg‘

W
F

LOWTRAN applies eq. (13) in calculations of transmittances for all
molecular species. However, the following material, which describes the
variable w and the coefficient Cu(v), applies only to the uniformiy mixed
gases.

The "equivalent absorber amount" w, between an stmospheric layer at
altitude Z (km) and the satellite, is given by

-]

Iy M |
w = gech f(l—)—) ('EQ-> dz (1k)
Po T ?

Z

vhere T, and Po are standard temperature and pressure (273.15°K and 1013 mb
in LOWTRAN). ,

Menipulating eq. (14) as we did eq. (5), we obtain the form used in our
computations, '

2 3. 3/4 |
w = "{.89x10"3 gech I [P—(?—Q—) ] dp, (15)
. B\T /)
o -

where the notation is the same as in eq. (6).

The wavenumber-dependent coefficients C,(v), taken from Selby et al. (1978),
are listed in teble 2, '



For convenience in describing the function F, we define its argument to be
B, i.e.,

B=C, (v) + log, w(P,m).

The argument B is evaluated by the 'procedures already described. The final
step in determining t,; is to use the look-up table relating B to Tye In
figure 9 this relation is graphed over the part of its domain that
corresponds to .900 < 1 < .999. This range covers the values of transmittance
that are encountered in the 3.7~ and 1ll-um windows for the vertical or nearly
vertical paths considered here. As an example of the use of the look-up
table, figure 9 shows that if one enters a value of -0.5 for B, he finds a
value of approximately 0.97 for ty. Since the values of transmittance
derived in this way are averages over 20~cm™1 intervals, they can be applied
directly in the 20-cm~1 rectangular subintervals in the 3.7-um window. In
the 11-ym window, we used the 20-cm~1 averages for LOWTRAN to represent the
transmittances in the 30-cm~l wide rectangular subintervals. Since the
absorption is small and varying slowly with wavenumber, we are confident that
this additional approximestion is permissible. ‘

4, COMPUTATIONAL DETAILS AND RESULTS
4.1 Quadrature

The computations of transmittances employ egs. (6), (8), (12), and (15),
which involve integrals with respect to atmospheric pressure. In numerically
evaluating these integrals, we apply the trapezoidal rule on the 100
quadrature points listed in table 3. These points represent equal increments
on the scale of P2/75

In computing radiances we evaluate eq. (3a) by the trapezoidasl rule,
specifying B and t at the 100 quadrature points listed in table 3. Because
the transmittances are already averages over the rectangular subintervals of
figures 3 and 4, as discussed in the previous section, we do not use eq. (3b).
As also discussed previously, the wide-band radiances are computed from.

‘eq. (L), and brightness temperatures are inferred from the look-up table as
i1llustrated in figure 6.

With the 100 quadrature points of table 3, we can most conveniently compute
radiances for those atmospheres that have their surface pressure equal to
1000 mb. However, the computer program that performs these calculations can
also handle atmospheres with surface pressures different from 1000 mb. If
the surface has a pressure greater than 1000 mb, we simply include that level
in all the integrations as & 10lst quadrature point. On the other hand, if
the surface has & pressure less than 1000 mb, we retain all 100 guadrature
levels in the integrations. However, to all levels whose pressures exceed
the surface pressure, we assign a value of temperature equal to the surface
temperature and a value of mixing ratio equal to the mixing ratio -at the
surface. Also, in eq. (3s) the surface term is placed at the 1000 mb level.
The radiances that are computed by this procedure are identical to the



radiances that would have been computed if we had integrated from the top of
the atmosphere down only as far as the asctual surface.

For completeness we should also mention that the computer program is
designed to use two values of temperature at the surface; one to represent
the radiative temperature of the surface itself (Tg), and the second to
represent the temperature of the atmosphere at the surface (the shelter
temperature), e.g. the value of T at P = 1000 mb. Often, however,
atmospheres are provided without a value of Tg being specified. In that
case the program automatically picks a value of Tg equal to the shelter
temperature.

L.2 Examples
4.,2,1 Atmospheres

All calculations were done for the three atmospheres whose temperature
profiles are shown in figure 10, and whose profiles of water-vapor mixing
ratio are shown in figure 11. They represent a diversity of conditions.
A1l three of these examples have P = 1000 mb at the earth's surface.

4.2.2. Transmittances

Figures 12 and 13 show transmittances calculated in each of the sub-
intervals in the 11~ and 3.T7-uym windows, respectively, for water-vapor,
nitrogen, and the uniformly-mixed gases. The AVHRR spectral response
functions alsoc appear in these figures. In figure 12 the water-vapor
transmittances were calculated for two atmospheres -~ 6LON, labelled "dry"
(total precipitable water = 0.75 cm), and 9°N, labelled "moist" (total
precipitable water = 4.86 cm). The absorption by the uniformly mixed gases
is unchanged for the two atmospheres. Not only is water vapor the strongest
absorber in this spectral region, but it is also the most variable. In
figure 13 the transmittences were calculated for only the moist (9ON)
atmosphere. Since the absorption is weak in this region of the spectrum,
its variability from wet to dry is less than that observed at 11 um. In
any cese, water vapor is the principal absorber for wavenumbers higher than
about 2600 cm~l. Below 2600 cm~l, the nitrogen collision-induced absorption
ig of significance, and it becomes dominant below 2500 em~1,

4.2.3 Atmospheric Attenugtion

Atmospheric attenuation 1s used here to mean the difference between the
earth's surface temperature and the brightness temperature measured at the
satellite. This quantity 1s of interest because one of the major applications
of date from satellite~borne radiometers is in determining surface
temperature. 1In opersational sounding we seldom have available the atmospheric
temperature and humidity profiles necessary to calculate attenuation by the
method of this report. However, these calculations are useful for
simulations and for case studies, where data from both the satellite
radiometer and concurrent radlosondes are avallable.

~13=-



Figure 1L shows the variation of attenuation with total precipitable water
in the atmosphere for a vertical path (sec® = 1). The calculations were done
for the AVHRR's channel L4 (lower panel) and channel 3 (upper panel). In
all calculations the surface temperatures were set equal to the temperatures
at 1000 mb. Calculations were done geparately for each of the three
atmospheres of figures 10 and 11. We varied the total precipitable water
by multiplying the mixing ratio profiles from figure 10 by 0.1, 0.2, 0.5,

1, 2, 3, and 4., However, the mixing-raetios were never allowed to exceed
values at saturation.

As expected, the attenuation at 11 um is a stronger function of precipitable
water than is the attenuation at 3.7 uym. One interesting result is that for
precipitable water less than about 2 cm, the attenuation is greater at 3.7 um
than it is at 11 um, while for the higher water vapor amounts the reverse is
true. This is a consequence of the fact that water vapor is the major
absorber in one interval, while the uniformly mixed gases and nitrogen
predominate in the other.

Figure 15 illustrates a second, perhaps more reslistic, approach to
demonstrate the dependence of attenuastion on total precipitable water in the
11-um window. The data in this figure were compiled by E.P. McClain (1979)
from a set of 60 atmospheres representing a range of typicel maritime
conditions around the globe. From our computer program, he obtalned the
attenuation in a vertical path for each atmosphere, and these are plotted as
the +'s in the figure. Incidentially, in all celculations, he set the
surface temperatures equal to the temperatures at 1000 mb. The solid lines
in the figure are the data from figure 14, which are included for the purpose
of comparison.

Figures 16 and 17 show the variation of attenuation with surface temperature
for channels 4 and 3, respectively, for vertical paths. These calculations
were also done separately for each of the three atmospheres. In each, we
varied the surface temperature sbout the 1000 mb value given in figure 10 ;
by 09K, +39K, +6°K, +9°K, and +12°K. The arrows indicate the temperature at
1000 mb for each atmosphere. '

5. CONCLUSION

The method described here enables us to calculate atmospheric radlances,
brightness temperatures, and attenuations in the wlde spectral intervals of
satellite radiometers in the 3.7~ and 1ll-um windows. The method involves
integrating the radiative transfer equation. Because transmittances are
modelled rather than computed line by line, the calculations are rapld. As
input, the method requires vertical profiles of atmospheric temperature and
vater~vapor mixing ratio. Hence its main utility is in case studies and
simulations, not in real~time retrievals of surface temperatures from
satellite data.

~1lh=



We are better sble to estimate the accuracy of the calculations at 11 um
than st 3.7 um. Since we have considerable experience (dating back to the
SIRS instruments on the Nimbus 3 and 4 satellites in the late 1960s) with
calculations and measurements at 11 um, we feel that these calculations are
not grossly in error. The error is probsbly less than 1 mW/(m2 sr em~l).
However, at 3.7 um we have little experience, and we are not in a position
to offer an estimate of accuracy. There is a need for work on the
absorption properties of atmospheric gases in this spectral region. In
addition, studies comparing measurements with the caleculations have yet to
be carried out.

The method described here is incorporated in a computer program that is
availeble by writing to the authors.
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Teble 1l.--Polynomial coefficients fd; spectral lines of water vapor

Subinterval  vg(cm™1)# ¢ c, cy Cy, c, Cg
1 775.0 ~2.23135 6.12346 0.45051 2.71498 1.20255 -1.96786
2 805.0 -1.85030 5.82894 0.41698 2.97656 1.11L0k -2.67401
3 835.0  -3,09180 7.0259% 0.3299% 3,39958 1.23004 -3.45263
i - 865.0 -2.81430 6.57833 0.39086 3.97101 1.26900 -4,46690
5 895.0 . =-3.27104 T7.0847T 0.36451 3,99316 1.13824 -2,29048
6 925.0 -3.87608 7.84570 0.28824 5.04843 1.23165 -2.31676
7 955.0 -3.96672 7.95368 0.26595 4.60590 1.02471 -1.36628
8 985.0 -4.05978 8.80584 0.18746 5.10449 1.06154 -2.46299
9 2450.0 -8.43013 15.21933 0.607T91 0.0 0.0 15.86929

10 2470.0 -8.72307 23.63057 0.0 0.0 0.0 0.0
11 2k90.0  -6.99218 8.24594 0.0 0.0 0.0 38.69545
12 2510.0 -6.38534 8.55110 0.0 0.0 0.91916 35.69L487
13 2530.0 -5.98694% 9.68929 -0.17617 3.36765 0.0 2.67673

14 2550.0 -5.33819 9.31851 0.0 2.95701 0.0 0.0
15 2570.0 -4.2kk07 9.72573 0.0 1.91971 0.0 ~0.94502
16 2590.0 -3.75231 9.61935 0.05234% 1.04405 0.46435 -0.50525
17 2610.0  -3.24848 9.12599 0.0698L 0.27549 0.57222 -0.L4B066
18 2630.0  -2.55092 8.73256 0.16667 ~-0.41303 1.24934  1.0495k
19 2650.0 -2.62371 8.72498 0.18783 -~0.92050 1.16865 1.51430%
20 2670.0 -2.57342 8.50253 0.21895 ~1.356Th 1.28026 1.95386
21 2690.0 -3.01532 8.69507 0.13112 -1.49397 0.79516 1.75TLT
22 2710.0  ~2.63606 9.24895 0.15824 ~0.27694 D,80061  1.56005
23 2730.0 -2.07502 8.2034% 0,12908 ~1.29617 1.31776 1.96238
2} 2750.0 ~3.17113 8.81213 0.12185 =~1.67030 0.65181 1.46866
25 2770.0 -2,57576 8.,39041  0.19882 ~1.78166 1.26947 1.6?839
26 2790.0 -2.31882 8.75249 0.20187 ~1.25449 1.13656 1.53516
27 2810.0 -2.,29242 8.58541  0.17273 ~0.74559 1.09597 1.18283
28 2830.0 -2.58936 9.27357 0.10902 ~0.05086 0.83697 0.96999
29 2850.0 -3.20658 9.73757 0.02928 0.23195 0.32549 -0.47011
30 2870.0 ~3.38421 9.50275 0.04329 0.T7L368 0.34426 -0.780LT
31 2890.0 -3.36249 8.32141 0.18909 1.40180 0.59159 -2.23602

#Midpoint of subintervsal
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Teble 1.--Polynomial coefficients for spectral lines of water vapor (continued)
Subinterval Cq Cg Cq Cio €1y Cip Ci3 C
1 -3.76620 0.16593 0.43179 3.83257 2.18960 -1.57369 3.31522 -1.34526
2 -3.92641 -2.7T7498  0.31976 2.79153 0.32945 -1.52147 3.42676 -1.05728
3 -6.40380 -1.00006 0.61283 5.99156 0.66930 -0.59443 T7.08475 -k.82659
4 -5.74839. -0.50223 0.78782 6.00689 '0.48105 -2.76763 7.00733 -k.61433
5 -5.69290 -0.64269  0.30803 T.Th251 -2.16183 -0.78133 3.28952 -5.12L0T7.
6 -5.89552 =3.T71300 ~ 0.36473 .6.08009 -3.61897 ,o.eledh'6.03967 -k .22350
T -4.72846 -3.68452  0.30339 5.13370 -1.26021 -0.67621 5.42607 -4.19546
8 -5.15066 -9.38148 0.43482 2.28616 0.52204 -2.57286 6.41268 -3.49313
9 -20.04587 0.0 -8.893Th 20.63594-116. TUTLT 33.37996 0.0 0.0
10 ~50.03848 36.53720 -10.09401 55.29951-13L.TL405 40.28809 0.0 16.65234
11 2.24573 Th.T6546 0.0 0.0 0.0 0.0 0.0 5.02699
12 0.0 7l.kh127 0.0 5.61771~35.20401 8.97379 -7.05114 0.0
13 4.28756 10.06262 0.0 -13.5554k9 -9.7504k2 0.0 0.0 9.83851
1k 5.48571 -3.73073 0.0 -17.92360 0.0 -2.39925 0.0 L, hg2k3
15 0.7k369 -2.64936 0.0 -1321884 0.0 -1.99500 0.0 6.24828
16 -1.28595 -2.82817 0.0 -10.27634 0.0 -1.52861 0.0 3.2070L
17 -3.49510 -0.91434 0.0 -7.74922 0.0 -0.96192 0.0 1.88804
18 -6.33610 -3.22005 ~0.00891 0.95724 0.0 -0.57106 3.56149 -3.29910
19 -5.87246 =-3.23284 0.0 3.32840 0.0 -0.48695 3.61152 -3.90407
20 -6.16732 =-2.35241 -0.09758 k4.72198 0.0 0.0 3.52096 -k4.33986
21 -3.80712 1.72189 ~0.11658 -1.68104 0.0 0.0 0.0 1.11738
22 -4.91668 -3.52099 0.01092 0.41617 0.0 0.0 5.75246 ~4,60047
23 -6.62488 0.0 -0.16732 1.01783 -2.43217 0.0 4.349k5  -2.02269
24 ~3.44052 1.19814 0.0 -1.70164 0.0 0.0 0.0 0.98203
25 -6.19237 0.0 -0.44376 4.41116 0.0 0.0 0.0 -3.59585
26 -5.86578 -2.40387 ~0.15961 3.21334 0.0 0.0 2,97682 -4.05581
27 -5.80459 =~3.41682 0.0 L.01662 0.0 -0.45678 3.43357 -3.93663
28 -h.70158 -6.29812 0.0 1.21437 0.0 0.0 5.6517h -3.L46L06
29 -1.50509 -0.80652 0.0 -6.04562 0.0 0.0 0.0 1.16613
30 -1.87255 0.0 0.0 -3.55467 0.0 0.85632 0.0 0.0
31 -2.62032 2.13675 0.22333 2.59861 2.14038 0.38428 0.0 -0.41753

-2] -



Table 2.~--Coefficlents for water-vapor continuum, nitrogen absorption,
end uniformly mixed gases

_ c°(v)x102 Oy (296 ,1)x1020
Subinterval v, ( cm-l)“ (molec -1cm2atm'l) (molec-lcmeatm—l) Cu( v)
o1 775 500 _ -0.53
2 805 L21 -1.18
3 835 359 -2.51
Y 865 310 -5.00
5 895 271 -5.00
6. 925 24o : -1.7T1
8 985 197 ~1.33
9 , 2hso h.30 323 -1.12
10 2470 © 3.95 240 -1.20
11 2490 . '3.65 164 ~1.5h
13 2530 3.15 6k.6 1 . -1.06
1% 2550 2.90 7.0 -0.45
15 . 2570 2.75 29.4 -0.37
16 2590 2.70 23.5 - =0.75
17 2610 2.70 17.6 -2.60
18 2630 2.75 5.88 ) -2,51
19 2650 2.95 -2.42
20 - 2670 : 3.20 -2.43
21 2690 3.45 -2.68
22 2710 3.70 -2.83
23 2730 k.00 -2.66
24 2750 4.35 -2.26
25 2770 4.65 -2.02
26 2790 .5.00 , -1.86
27 2810 " 5.35 -1.79
28 2830 5.70 -1.69
29 2850 6.05 -1.78
30 2870 , 6.40 -1.21
31 2890 6.80 ‘ -0.53

*Midpoint of subinterval



Table 3.--The 100 quadrature points for integrations over atmospheric pressure

Level Pressure Level Pressure Level Pressure
(mb) (mb)
1 - .0100 35 30.2057 68 271.2454
2- .0225 36 33.0936 69 284 ,8863
3 L0435 37 36.1736 70 299.0103
Y .0756 38 39.4530 1 313.6276
5 .1220 39 42,9395 72 328.7482
6 .1858 4o 46,6407 73 34} ,3825
T .2TOk 41 50.564k T4 360.5409
8 «3795 Lo 54.7183 75 377.2336
9 .5169 L3 59.110k4 76 394 .4712
10 .6866 Lk 63.7488 T7 h12.26k2
11 .8928 45 68.6414 78 430.6233
12 1.1399 46 73.7966 79 449.5590
13 1.4323 g 79.2226 80 469.0821
1k 1. TTHT L8 84,9277 81 4189.203L
15 2.1719 L9 90.9204 82 509.9338
16 2.6289 50 97.2092 83 531.2841
17 3.1507 51 103.8028 84 553.2655
18 3.7427 52 110.T7098 85 575.8890
19 h.h101 53 117.9389 86 599.1656
20 5.1584 54 125.4991 87 623.1066
21 5.9934 55 133.3993 88 647.7232
22 6.9207 56 141.6485 89 673.0267
23 7.9462 57 150.2558 90 699.0285
24 9.0758 58 159.2303 91 725.7h01
25 10.3158 59 168.5813 92 753.1729
26 11.6724 60 178.3181 93 781.3385
27 13.1517 61 188.4501 ok 810.2486
28 14,7804 62 198.9869 95 839.9147
29 16.5050 63 209.9378 96 870.3L8T
30 18.3920 6l 221.3126 97 901.5623
31 20.4284 65 233.1210 98 933.56T4
32 22,6209 66 245.3727 99 966.3760
33 2k . 9766 67 258.0775 100 1000.0000
3k - 27.5025
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Figure 1.--Spectral response function for channel 4 of AVHRR on TIROS-N (Lauritson 1979).
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Figure 2.--As in figure 1, for channel 3.
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Figure 6.--Look-up table relating blackbody radiance to temperature. Solid curve (scale at
bottom) for AVHRR channel 4; dashed curve (scale at top) for AVHRR channel 3.
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